Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction
نویسندگان
چکیده
Optical imaging samplers are becoming widely used in plankton ecology, but image analysis methods have lagged behind image acquisition rates. Automated methods for analysis and recognition of plankton images have been developed, which are capable of real-time processing of incoming image data into major taxonomic groups. The limited accuracy of these methods can require significant manual post-processing to correct the automatically generated results, in order to obtain accurate estimates of plankton abundance patterns. We present here a dual-classification method in which each plankton image is first identified using a shaped-based feature set and a neural network classifier, and then a second time using a texture-based feature set and a support vector machine classifier. The plankton image is considered to belong to a given taxon only if the 2 identifications agree; otherwise it is labeled as unknown. This dual-classification method greatly reduces the false positive rate, and thus gives better abundance estimation in regions of low relative abundance. A confusion matrix is computed from a set of training images in order to determine the detection and false positives rates. These rates are used to correct abundances estimated from the automatic classification results. Aside from the manual sorting required to generate the initial training set of images, this dual-classification method is fully automatic and does not require subsequent manual correction of automatically sorted images. The resulting abundances agree closely with those obtained using manually sorted results. A set of images from a Video Plankton Recorder was used to evaluate this method and compare it with previously reported single-classifier results for major taxa.
منابع مشابه
Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine
A long-standing problem in plankton ecology is sparseness of taxa-specific data. New optical imaging systems are becoming available which can acquire high-resolution data on the abundance and biomass of plankton taxa. The Video Plankton Recorder (VPR) has been designed and used for automatic sampling and visualization of major planktonic taxa at sea in real time, providing high-resolution data ...
متن کاملEffects of Lugol’s fixation on the size structure of natural nano–microplankton samples, analyzed by means of an automatic counting method
Accurate abundance and biomass measurements are essential steps for determining the role of nano– microplankton in the microbial food web. Owing to practical constraints, traditional microscope analysis of nano–microplankton requires preservation; but preservatives alter plankton samples and bias the measurements. The majority of studies on the effects of preservation have been based on cell cu...
متن کاملAn Automatic Fingerprint Classification Algorithm
Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...
متن کاملAn Automatic Fingerprint Classification Algorithm
Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...
متن کاملIdentification and Quantification of Texture Soy Protein in A Mixture with Beef Meat Using ATR-FTIR Spectroscopy in Combination with Chemometric Methods
Meat, as an important source of protein, is one of the main parts of many people’s diet. Due toeconomic interests and thereupon adulteration, there are special concerns on its accurate labeling.In this study Fourier transform infrared (ATR-FTIR) spectroscopy combined with chemometrictechniques (principal component analysis (PCA), artificial neural networks (ANNs), and partial<...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006